S. Sultan, J. N. Tiwari, A. N. Singh, S. Zhumagali, M. Ha, C. W. Myung, P. Thangavel, K. S. Kim
Adv. Ener. Mater., 2019
42
Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity
J. N. Tiwari, S. Sultan, C. W. Myung, T. Yoon, N. Li, M. Ha, A. M. Harzandi, H. J. Park, D. Y. Kim, S. S. Chandrasekaran, W. G. Lee, V. Vij, H. Kang, T. J. Shin, H. S. Shin, G. Lee, Z. Lee, K. S. Kim
Nat. Energy, 2018
43
A new perspective on the role of A-site cations in perovskite solar cells
C. W. Myung, J. Yun, G. Lee, K. S. Kim
Adv. Energy Mater., 2018
44
Organic cation steered interfacial electron transfer within organic–inorganic perovskite solar cells
S. Javaid†, C. W. Myung†, J. Yun, G. Lee, K. S. Kim
J. Mater. Chem. A, 2018
45
Anomalous Ambipolar Transport of Organic Semiconducting Crystals via Control of Molecular Packing Structures
B. Park, K. Kim, J. Park, H. Lim, P. T. Lanh, A. Jang, C. Hyun, C. W. Myung, S. Park, J. W. Kim, K. S. Kim, H. S. Shin, G. Lee, S. H. Kim, C. E. Park, J. K. Kim
ACS Appl. Mater. Interfaces, 2017
46
Graphene and graphene analogs toward optical, electronic, spintronic, green-chemical, energy-material, sensing, and medical applications
M. R. Rezapour†, C. W. Myung†, J. Yun, A. Ghassami, N. Li, S. U. Yu, A. Hajibabaei, Y. Park, K. S. Kim
ACS Appl. Mater. Interfaces, 2017
47
Two-dimensional excitonic photoluminescence in graphene on a Cu surface
Y. Park†, Y. S. Kim†, C. W. Myung†, R. A. Taylor, C. C. S. Chan, B. P. L. Reid, T. J. Puchtler, R. J. Nicholas, L. T. Singh, G. Lee, C.-C. Hwang, C.-Y. Park, K. S. Kim
ACS Nano, 2017
48
Graphene edges and beyond: temperature driven structures and electromagnetic properties
C. Hyun, J. Yun, W. J. Cho, C. W. Myung, J. Park, G. Lee, Z. Lee, K. Kim, K. S. Kim
ACS Nano, 2015
49
Electrochemical Fischer–Tropsch chemistry in Au–SrTiO3 Catalyst
Advanced Energy Materials, 2024
50
Active sparse Bayesian committee machine (BCM) potential, an on-the-fly MLP architecture that aggregates local sparse Gaussian process regression (SGPR) machine learning potential